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Abstract 

 

 

One of the basic requirements for the proper functioning of an institute is to have a conflict free timetable 

for its staff. Although mathematical programming could provide a high level of optimization in the 

generation of complex timetables, its forbiddingly high computational time discourages such an approach 

making approximation algorithms as the best alternative. One such method which gives satisfactory 

solutions is genetic algorithm (GA). This work is directed at finding an optimum solution to a general 

university timetable problem employing three-parent GA using tournament selection method and a new 

Uni-One-Point crossover technique. The results generated were compared with those obtained with several 

other search methods and found to be satisfactory enough to extend studies with more constraints to obtain 

quality timetables in the future. 

   

 

Keywords: Genetic Algorithm, timetabling, evolution, three-parent crossover, Uni-One-Point crossover. 

 

Introduction 

 

The non-availability of promising algorithms capable of exploring and exploiting all the possible solutions 

for real world NP-hard problems in the search for global maxima, lead scientists to develop efficient 

optimization algorithms to solve such problems. Such developments involve probing new and unexplored 

areas in the search space and exploiting selected small areas which hopefully lead to global maxima. To get 

quality solutions to problems related to science, engineering economics and business within an acceptable 

time frame, scientists have been developing heuristic and meta-heuristic algorithms (Suh, 2011). One such 

method, capable of yielding good results, is Genetic algorithms. It is a type of evolutionary algorithm which 

takes a meta-heuristic approach. The method needs limited information and carry-out the task by sacrificing 

completeness for speed. This nature inspired searching and optimization method involves techniques such 

as crossover, mutation and selection. However, since it is population dependent it is handicapped with 

longer computational time. It can solve problems associated with optimization, scheduling, economics, 

bioinformatics etc. reasonably well (Ausiello, 2013, Desale, 2015).     

   
A well composed timetable provides accurate information about the allocation of rooms to staff and students 

of a given Institute during specific time periods. Constructing an acceptable timetable for a complex 

institute such as a university is a difficult task. Mathematical programming can provide a high level of 

optimization (global convergence) in the construction of complex timetables. However, the high 

computational time associated with this approach discourages its use (Moin, 2015) making approximation 

algorithms (Jones, 1999) as the next best option. One such method is metaheuristics. It includes genetic 

algorithm (GA) (Yaqin, 2010), discrete artificial bee colony (DABC) (Yin, 2011), tabu search (TS) (Zhang, 

2007), and simulated annealing (SA) (Song, 2012).  
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Among these, GA is considered to be an able optimization method used to search for global maxima (Wan, 

2013). It selects a pair of parents (chromosome pairs) to produce two offspring. The parents become part 

of the population as well. GA utilizes exploration and exploitation techniques. The operators for exploration 

constitute mutations whilst those for exploitations include the crossovers. The latter helps to converge the 

population to better solutions. It is important to maintain a balance between the rates of mutation. Whilst, 

too high rates prevent the population driving towards an optimum solution, due to the increase of the search 

area, too low rates prevent it reaching a global maximum by entangling in a local optimum, prematurely. It 

has been observed that when more than two parents are used, the evolutionary process get enhanced leading 

to favourable changes in the subsequent generation (Patel, 2012). This was demonstrated by the 

experiments conducted by Eiben and van Kemenade (Eiben, 1995). Their work showed significant gain 

with more than two parents especially with computationally less expensive diagonal crossover technique. 

Further, unimodal distribution crossover (UNDX) method which involves multi-parents has also shown 

impressive results (Elsayed, 2011).   

 

In an earlier study, we utilized GA with two-parent systems to solve timetabling problems in educational 

institutes (Herath, 2016). Subsequently, studies were extended to improve the outcome using three-parents 

with the tournament selection and the uniform crossover methods.  

       

The uniform three-parent crossover technique (Manning, 2013) involves the random selection of three 

parents followed by the comparison of each bit of the first parent with the corresponding one of the second 

parent. If they are the same it is being taken for the offspring. If it is different, the bit from the third parent 

is taken.  

 

The results obtained were satisfactory enough for further investigation (Herath, 2020). The aim of the 

present investigation is to extend the studies adding a new Uni-One-Point crossover technique using 

tournament as the selection technique. The change yielded satisfactory results.   

 

Methodology 

 

Selection 

The tournament selection method is used because it is efficient to code, work on parallel architectures and 

allows selection pressure to be changed with ease.  

 

Operators 

 

Crossover 

A new Uni-One-Point crossover method using three parents is used in this investigation. At the outset, a 

uniform crossover is carried out between two parents and the resulting offspring is subjected to a one-point 

crossover with the third parent to obtain an offspring for the next generation (Figure 1). 

  
                    C1       C2        C3                                         C4        C5             C6 

               

P1       

       

P2       

   
O1        

        

O2        

                           
O1        

        

P3        

(a) Paren P1 and Parent 2 are crossed using uniform crossover. 

    C1, C2, C3, C4, C5 and C6 are the crossover points. 

(b) 01 and 02 are the offspring obtained by uniform crossover  

      (a).     

(c) Offspring 01 from (b) crossed over with one point 

     crossover (C7) with parent 3 (P3) 

C7 
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Figure 1: Three parent Uni-One-Point Crossover (C8) with parent 3 (P3). 

 

Mutation  

 

Mutation is carried out in a manner a new random valid individual is created. It is used to select 

genes to be copied into the individual who is to be mutated to maintain diversity. This is referred 

to as uniform mutation (Soni, 2014). It ensures that all the mutated individuals are valid.  

 

Testing Criteria:  

The following criteria were tested using an API. 

- tournament selection method.   

- different crossover options (one-point, uniform, Uni-three-parent and Uni-One-Point 

crossovers).  

- stopping condition (setting the number of generations).   

- selecting the size of the population.  

- fitness function.  

- other parameters such as the mutation rate.   

These criteria were tested using the following constraint satisfaction problems. 

- graph coloring technique (Hindi, 2012).  

- Travelling Salesman Problem (Abdoun, 2012).  

- Sudoku (Douglas, 2014).    

The tests were carried out to compare the different cross over methods, the number of generations, 

varying population size, and mutation rates.     

 

Chromosome class. 

 

It is an abstract class that describes the prototype functions set up by specific problems. It is 

composed of two fields. They are the encoded and the fitness fields. Whilst the former is used to 

encode the solution to the problem, the latter is used to cache the fitness of the solution. The fitness 

evaluation is horded as it will be called frequently during evaluation. This class constitutes four 

methods. One of them determines the fitness of the solution. Random initialization of the 

population is carried out by the second method. A new chromosome to wrap the encoded value is 

created by the third method. It is used in the crossover phase when offspring are formed from 

(d) Offspring O3 and Parent 04 from one point crossover (C7) 

    with Parent 03. 

(e) Offspring O2 from (b) crossed over with one point 

      crossover (C8). 
    C1, C2, C3, C4, C5 and C6 are the crossover points 

(f) Offsprings 5 and 6 from one point crossover (C8) with 

      With Parent 3 (P3). 
    C1, C2, C3, C4, C5 and C6 are the crossover points 

C8 
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parents’ chromosomes. If the encoded value of the chromosome is modified, like in a mutation, 

the cached fitness value will not have any validity and will be cleared by the fourth method.  

 

Optimize GA class 

 

This class solves specific combination optimization problems with genetic algorithms. It has the 

fields to contain the population, selection type (Roulette, Tournament), the crossover type 

(Uniform, one Point, Uni-three parent, and Uni-one point), the mutation type (Mutate point, Switch 

point), the size of the elite portion of the population, size or the number of the chromosomes that 

are selected to enter the crossover phase, mutation rate, and a Boolean field that examines to see 

if some of values in chromosome are unique (for problems such as TSP).   

 

The methods here are set to initialize the variables as well as to run the optimization to output the 

results stored in the population with their fitness value.   

 

Using the API to solve specific problems  

Travelling Salesman problem:  

 

Encode the solution:  Each solution is encoded with an array of integer having N elements, each 

element having value from 1 to N, the values of the elements need to be unique (no two elements 

have same value).  

 

This array represents the indexes of the nodes through that order the salesman travels.  

Example:  

  N = 8  

  Sample solutions:  

   (1, 2, 3, 8, 7, 6, 5, 4)  

   (4, 5, 6, 2, 3, 1, 7,8)  

  

Note: The encoded value is actually a permutation of 1..N  

Fitness evaluation  

 If D is the distance matrix of the graph (size of N+1 x N+1, since node 0 is also included), 

then fitness is computed by this formula:  

   (𝑒𝑛𝑐𝑜𝑑𝑒𝑑) = [0,[0]] + 𝐷[𝑒𝑛𝑐𝑜𝑑𝑒𝑑[0], 𝑒𝑛𝑐𝑜𝑑𝑒𝑑[1]]  

      + . . . + [[𝑁 − 2], [𝑁 − 1]] + [[𝑁 − 1],0]  
Sudoku  

 

Encode the solution:  

Each solution is encoded with an array of integer. There are 81 (9x9) squares in 

the matrix, however, some squares have been already filled with values at the beginning. 

Therefore, it only needs (81-M) number to encode the remaining blank squares, with M 

being the number of filled squares.  
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Fitness evaluation  

 

The fitness of a solution is calculated as shown below.   

● For each row, count the unique number in that row  

● For each column, count the unique number in that column  

● For each 3x3 block, count the unique number in that block  

 Sum all the counts from 9 rows, 9 columns and 9 blocks. This total sum is defined as the 

fitness of the solution. The best solution will need to have fitness of 243, which is (9*(9+9+9)).  

 

Graph Coloring Problem  

 

Encode the solution  

 

A solution is encoded with an array of integer, each element being the color index of each node in 

the graph.  

 

Fitness evaluation  

 

The fitness of a solution is calculated as shown below (Hindi, 2012).   

 Count the number of illegal edges: Edges that have two nodes painted with same color, and 

define this value as m  

● Count the number of unique colors in the graph and define this number as c  

● Fitness is defined as follow: 

   𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1/(𝑚 + 𝑐/(𝑐 + 1))  

 We choose the above formula because for the following reasons:   

● In a legal solution, m will be 0, in an illegal solution m is bigger than or equal to 

1, therefore any legal solution will have fitness larger than 1, while any illegal 

solution will have fitness smaller than 1.  

● Among legal solutions, those with fewer colors will have better fitness.   

 

University time table Problem  

 

A university needs to create a time table for a semester. The university has a set of rooms; each 

room has a capacity for a maximum number of students that can participate, a set of instructors, a 

set of classes (which have been assigned to each instructor beforehand). Each class has been 

populated with a number of students and can take place during a specific time slot in a set of time 

slot during the week.   

 To do: Assign each class to a time slot and room so that no instructor has conflict schedules  

(having to teach two class in the same time slot)  

 Here are the inputs of the problem:   
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● Instructors: Set of instructors, each with  

○ id: Staff Id  

○ name: Name     

● Rooms: Set of rooms, each with  

○ name: Room number  

○ capacity: Number of seat   

● TimeSlots: Set of TimeSlots, each with  

○ id: Identity of each slot  

○ startHour: start hour  

○ startMinute: start minute  

○ endHour: end hour  

○ endMinute: end minute  

○ dayOfWeek: day of week   

● Class: Set of classes, each with  

○ name: Name of the class  

○ instructorId: id of the instructor that will 

teach this class ○ numberOfStudent: Number of 

registered student   

The output of the problem:  

● TimeSlotId for each class  

● Room number of each class   

Problem Definition:  

The problem definition for the university timetable is as follows.   

The hard constraints for the timetable are:   

H1 - a student can be in only one class at any given time.   

H2 – the size of the classroom can accommodate all the students.                 

H3 – an instructor can teach only one class at any given time.   

The soft constraints for the timetable are as follows. These violations are penalized according 

to the number of violations.   

S1 - an instructor’s preference for a specific time slot.         

S2 - an instructor’s preference for a specific classroom.   

An event (course, instructor) is assigned to a timeslot as well as a number of resources 

(students, classrooms). This is done in such way as to avoid any clashes between the classrooms, 

timeslots and events.   

As stated by Rossi-Doria et al. (Rossi-Doria, 2003, Blum, 2002), the university timetable 

comprises of a set of n events (classes, courses ) E = {e1,e2,...,en} to be organized into a set of p 

time slots T = {t1,t2,...,tp}, a set of m available rooms R = {r1,r2,...,rm} in which events can take 

place, a set of k students S = {s1,s2,...,sk} who are available for the events, and a set of l available 

features F = {f1,f2,...,fl} that are fulfilled by rooms and made essential by events.  
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The solution to the timetable can be represented in the form of an ordered list of pairs (ri,ti), of 

which the index of each set is the identification number of an event ei ∈ E (i = 1,2,··· ,n). For 

example, the time slots and rooms are assigned to events in an ordered list of sets:  

   (1,5), (4,10), (2,12), ··. , (3,7)   

where room 1 and time slot 5 are assigned to event 1, room 4 and time slot 10 are assigned 

to event 2, and so on.  

The object of the timetable is to decrease the soft constraint violations of a possible solution 

(a possible solution is a timetable that has no hard constraint violations). The objective function 

f(s) for a timetable s is the weighted total of the number of hard constraint violations HCV and soft 

constraint violations SCV.   

  f(s) := HCV(s) ∗ C + SCV(s)    

where C is a constant. The value of C is greater than the largest possible number of SCV. As 

a result, when C is set to a value (C = 106) and the result of f(s)is 106 or higher, then the solution 

is rejected.  

Encode the solution:  

 To find the timeSlotId and roomIndex for each class, so there will be 2 arrays of integers. 

However, it is noted that two classes may have the same timeSlotId or may have same roomIndex, 

but they cannot have both the same timeSlotId and roomIndex. It is reasonable to convert the pair 

(slotId, roomIndex) to a unique integer by this formula:  

   𝑚𝑒𝑟𝑔𝑒𝐼𝑛𝑑𝑒𝑥 = 𝑟𝑜𝑜𝑚𝐼𝑛𝑑𝑒𝑥 ∗ 𝑡𝑖𝑚𝑒𝑆𝑙𝑜𝑡𝑠. 𝑙𝑒𝑛𝑔𝑡ℎ + 𝑡𝑖𝑚𝑒𝑆𝑙𝑜𝑡𝐼𝑑  

 So each class will have a unique mergeIndex. The solution will be an array of integer with 

nClass element, each element having value form 1 to timeSlots.length*rooms.length.   

 In other words, a solution is a combination C(N,k) with N = timeSlots.length*rooms.length 

and k=nClass.  

Fitness evaluation  

For each instructor, all of his/her classes are collected, that have been allocated with an 

adequate room (a room that can accommodate all registered students), and then collect the 

timeSlotId from all of these classes. Then count the number of unique timeSlotId from this set.  

Then, sum the count of unique timeSlotId for all instructors, and define that this is the fitness.  

It is easy to see that a legal time table will have fitness that is equal to the number of classes.  

University time table with soft constraints.  

In the University time table problem, it is likely that we can find several solutions that satisfy the 

hard constraint (no violation on room size & conflict time slot for each instructor). Among these 

feasible solutions, we can pick out the best preferable solution by adding a soft constraint to the 

problem. Here, the soft constraint selected was the preferability of the instructors over some 

specific time slots (i.e. each instructor may prefer to teach at specific hours of day and specific 

days of week), and prefer specific rooms to teach in (i.e. each instructor may prefer to teach at 

some specific location).  
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 First, in order to update the input of the problem, each instructor will have an extra field 

named  

“preferedTimeSlotIds” to indicate the id of time slots on which he prefers to teach, and 

another field named “preferedRoomIds” to indicate the id of the rooms at which he prefers to teach 

in.  

 

The next step is to define the fitness of the problem. This can be inspired from the Graph coloring 

problem (in which there are two constraints: The hard constraint is no violated edges, and the soft 

constraint is to minimize number of colors). To define the fitness for the Timetable problem with 

soft constraints, the following formula can be used.  

     𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1/(𝑚 + 𝑐/(𝑐 + 1))  

 

With m being the number of violated class (Classes that cannot be assigned with an appropriate 

room and time slot) and c being the number of class with unpreferable time slot/room (classes 

assigned with a time slot/room which is not preferred by the instructor).  

 

By defining the fitness above, it is noticed that all feasible solutions will have fitness larger than 1 

(as m=0), while all infeasible solutions will have fitness smaller than 1 (as m > 0).  

 

In the ideal case, both m and c are equal to 0, the fitness will become infinity. To prevent this, a 

small adjustment can be made by making c equal to the number of unpreferable class plus 1. With 

this adjustment, the maximum fitness is 2.0 (when there is no class violation and all instructors’ 

preferability is satisfied). 
 

Experiments and Results 

 

The under described experiments were conducted to test the efficiency of our new Uni-One-Point-

Crossover (UOPC) procedure with other crossover operators [Uniform (UC), One-point (OPC) and Uni-

Three-parent (U3PC)] using Tournament (TS) as the selection technique by comparing the results obtained 

for the Time Table Schedule (With Hard and Soft constraints) (TTS), the Traveling Salesman (TS) and the 

Graph Colouring (GC) problems. For each crossover method ten runs were executed. The data were 

averaged. The population size, crossover size, mutation rate and the total number of generations were kept 

constant in all the experiments.   

 

Time Table (Tables, graphs, 160, 200 classes)  

 

With hard constraints  

 
 A time schedule problem for a university was generated manually using the parameters, (1) number of time 

slots: 10 (5 days a week x 2 slots a day), (2) number of rooms:  8, (3) number of instructors: 10 and (4) 

Number of classes: 40  (each instructor has to teach 4 classes a week).  
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The number of classes that were effectively assigned with time slots and suitable rooms comprises the score 

to compare. The total number of classes is considered to be the best score.  

 

The outcome of the crossover methods is shown in the following table (Table 1) and bar diagram (Figure 2). 

 

 

   

 

 

Table 1 and Figure 2 show that the number of successfully assigned classes is similar for all crossover 

techniques and the tournament selection method used in this experiment. The preferred highest value 39.3 

is for the one-point crossover operator.  

With soft constraints  

 Some soft constraints were introduced by allowing each instructor to pick 4 time slots and 4 rooms to his 

or her liking. The number of un-preferred classes is the score to compare. Thus, the best score is 0. Table 

2and Figure 3 give the results for all the crossover methods. 

  

 

 
 

 

 

As with hard constraints, the results for the soft constraints too are similar with all the crossover techniques 

used. The preferred lowest value for the Uni-three-parent crossover with the tournament selection 

procedure is 17.7.   

A program to further evaluate the performance of different crossover methods with the tournament selection 

procedure was initiated to create four bench mark problems. They were two hard-constraint problems and 

two soft-constraint problems. The hard-constraint problems were 1. A medium size problem with 160 

classes and 2. A large size problem with 200 classes.   
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  Crossover Type 

Tournament 

selection  

1 Uniform Crossover  38.9 

2 Onepoint Crossover  39.3 

3 Uni-OnePoint Crossover  38.9 

4 Uni-three-parent Crossover  38.3 

 
  Crossover Type 

Tournament 

selection  

1 Uniform Crossover  18.7  

2 One-point Crossover  19.3  

3 Uni-One-Point Crossover  19.4  

4 Uni-three-parent Crossover  17.7  

Figure-2:   Number of successfully assigned 

classes with 

different crossovers. (Higher is better) 

Figure-3: Number of un-preferred classes with 

different Selection 

and Crossover methods (lower is better). 

Table 1: Results of Timetable Schedule 

(Hard constraints). 

Table 2: Results of Timetable Schedule (Soft 

constraints) 
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These problems are associated with 40 and 50 instructors, respectively. Each instructor takes 4 classes a 

week and each class is held during one the 10 available time slots for the week (2 time slots a day: 5 days 

a week). The number of rooms needed to conduct classes is determined by dividing the available number 

of rooms by the number of time slots. Since, the available number of rooms are limited, getting at a feasible 

solution without violating any constraints becomes a tedious task. In here, the number of classes assigned 

(higher the better) indicates how successful the performance was with regards to hard constraints.  

The soft-constraint problems also included, (1) A medium size problem with 160 classes and (2) A large 

size problem with 200 classes. To find an acceptable solution with ease, the number of available rooms was 

doubled compared to the hard constraint problems. However, the performance was evaluated by the soft-

constraint violations (the lower the better). It is necessary that the resulting solution has to satisfy all the 

hard constraints before it could be subjected to a performance evaluation.  

It was also decided at this point to compare the performance of GA with other combinatorial optimization 

methods which may be of help to find better solutions to timetabling problems. The methods included, (1) 

Particle Swarm Optimization (PSO) (Thangaraj, 2011), (2) Simulated Annealing (SA). (Russel, 1995, 

Abramson, 1991, Fredrikson, 2016, Rosocha, 2015, Varty, 2017. Brownlee, 2011, Kirkpatrick, 1983, 

Chmait, 2013, Patrick, 2012) and Tabu Search (TS) (Burke. 1997). The results of GA were compared with 

each other as well as with the above mentioned optimization techniques. The performance was tested using 

10 runs and the results were averaged. 

Hard constraint problem results: Case 1: Timetable for 160 classes.  

 

 

 

 
 
 

 

 

 

 

 

Here, the highest value of 147.6 is obtained with one-point crossover method. The values obtained for PSO 

and SA were 112.2 and 111.1 respectively. Figure 4 shows the results when the number of classes is 

increased to 160.  
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N u m b e r  o f  s u c c e s s f u l y  a s s i g n e d  c l a s s e s  Crossover Type Tournament selection  Results 

1 Particle swarm     112.2  

2 Simulated annealing     111.1  

3 Tabu search  153.0 

4 Uniform Crossover  120.5   

5 One-Point Crossover  147.6   

6 Uni-One-Point Crossover  146.6   

7 Uni-three-parent Crossover  141.6   

    

Figure-4: Number of successfully assigned classes 

for a medium size class with hard constraints, 

Particle Swarm Optimization and Simulated 

Annealing and Tabu (higher the better). 
 

Table-3: Results of successfully assigned 

classes for a medium sized classes with hard 

constraints, Particle Swarm Optimization, 

Simulated Annealing and Tabu.  
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Case 2: Timetable for 200 classes.  

The table (Table 4) and the corresponding bar diagram (Figure 5) for Case 2 are given below. 

 

 

 

 

   
 

 

 

 

 

The preferred highest value of 176.125 in here was shown for the Uni-One-Point crossover and tournament 

selection combination. The results for PSO and SA were 132.2 and 129.2 respectively.  

 Soft constraint problem results 

 

 Case 1: Timetable for 160 classes. 

        

The results when the number of classes was 160 are shown in the table (Table 5) and the bar diagram 

(Figure 6). 

 

     

 

 

 

 
 

               

 

                                                                                                       
 

The preferred lowest value here is 12.75 with the one-point crossover, tournament selection combination. Both PSO 

and SA showed a result of 0 (no acceptable results). 

Case 2: Timetable for 200 classes.  
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  Crossover Type 

Tournament selection  Results 

1 Particle swarm   132.2  

2 Simulated annealing   129.2  

3 Tabu search  181.6 

4 Uniform Crossover  142.125   

5 One-Point Crossover  174.25   

6 Uni-One-Point Crossover  176.125   

7 Uni-three-parent Crossover  163.375   

 
  Crossover Type 

Tournament selection  Results 

1 Particle swarm   No acceptable 

results  

2 Simulated annealing   No acceptable 

results 

3 Tabu search  13.7 

4 Uniform Crossover   No acceptable results  

5 One-Point Crossover  12.75   

6 Uni-One-Point Crossover  23   

7 Uni-three-parent Crossover  33.375   

Figure-5: Number of successfully assigned 

classes for large size classes using hard 

constraints, Particle Swarm Optimization, and 

Simulated Annealing, and Tabu (higher the 

better). 
 

 

 

Figure-6: Number of un-preferred classes 

with tournament Selection and Crossover 

methods using soft constraints, Particle 

Swarm Optimization and Simulated 

Annealing and Tabu (lower is better).  
 

 

 

Table-5: Number of un-preferred classes assigned 

for a medium size class with soft constraints, 

Particle Swarm Optimization Simulated 

Annealing and Tabu. 

Table-6: Results of un-preferred classes assigned 

for a large size class with soft constraints, Particle 

Swarm Optimization and Simulated Annealing. 

Table-4: Results of successfully assigned 

classes for a large sized classes with hard 

constraints, Particle Swarm Optimization, 

Simulated Annealing and Tabu. 



Issues in Information Systems 
Volume 25, Issue 4 pp. 392-408, 2024 

 
 

403 

 

 
 

 

 

 

 

The uniform crossover/tournament combination along with PSO and SAGA were unable to find a feasible 

solution (one that satisfied all the hard constraints). As such, their soft constraints fitness was not 

considered. 

 

 

 

Traveling Salesman 

 

The input data were selected from the sgb128_dist dataset. It contains a 128X128 matrix of city-city 

distance. The total distance the salesman has to travel is the score to compare. The best solution is the one 

with the lowest score. Table-7 and Figure-8 show the results of different crossover methods. 
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Crossover Type 

Tournament 

selection  

Results 

1 Particle swarm  

(PSO) 

 No 

acceptable 

results 

2 Simulated annealing 

(SA) 

 No 

acceptable 

results  

3 Uniform Crossover  No acceptable 

results  

 

4 One-Point Crossover  38.3   

5 Uni-One-Point 

Crossover  

97.5   

6 Uni-three-parent 

Crossover  

56.1   

 
  Crossover Type 

Tournament 

selection  

1 Uniform Crossover  90040.2 

2 One-Point Crossover  75927.4 

3 Uni-One-Point Crossover (UOPC) 63980 

4 Uni-three-parent Crossover 

(U3PC) 
104543.2 

Figure-7: Number of un-preferred classes with 

different Selection and Crossover methods, using soft 

constraints, Particle Swarm Optimization and 

Simulated Annealing.  

 
 

 

Figure-8: Distance travelled with different 

Selection 

and Crossover methods. 

 

 

Table 7: Results of Traveling Salesman 

Problem. 
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For economic reasons institutes are in search of methods that help to find the least distance a salesman has 

to travel to a given destination without repletion. This experiment was carried out to check the validity of 

a genetic operator (U3PC) / tournament selection combination to solve TS and few other problems prior to 

using it to solve the university timetabling problem. The investigation was extended to cover other 

frequently used crossover operators. The results tabulated in Table-7 accompanied by the bar diagram 

(Figure-8) suggest that the UOPC /tournament combination gives lowest distance value (63980) compared 

to the rest of the selection methods. 

 
Graph Colouring 

The required input data were taken from the queen 16_16 dataset. It contained a graph having 256 vertices 

and 12640 edges. The number of colors is the score to compare and the lowest value represents the best 

solution. The result of different crossover operators and the tournament selection method are shown in the 

table (Table-8) and the graph (Figure-9). 

 

 

 

 

 

 

 

 

The aim of this coloring method is to utilize the minimum number of colors to solve problems. The results 

of this experiment are tabulated in table (Table-8) and illustrated in Figure 9. The results indicate that the 

Uni-three-parent crossover /tournament combination gives the highest value (156.6) making the method 

unsuitable. The lowest number of colors (92.7) is given by the uniform crossover-tournament combination 

making it the best option among the rest. 

 

Sudoku  

As input data, a sample sudoku quiz from https://sudoku.com/ was used. The sum of number of unique 

digits in 9 rows, 9 columns and 9 blocks was the score to compare. The best score to archive would be 

9x9x3 = 243. Result of tournament selection/crossover methods are shown in Table 9 and graph (Figure 

10).  
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  Crossover Type 

Tournament selection  

1 Uniform Crossover (UC) 92.7  

2 One-Point Crossover  101.6  

3 Uni-One-Point Crossover (UOPC) 93.6  

4 Uni-three-parent Crossover  156.6  

Figure 9: Number of colours with different 

crossover operators and the tournament 

selection method. 

 

Table 8: Results of Graph Colouring Method. 

(minimum 

number of colours-lower is better). 

https://sudoku.com/
https://sudoku.com/
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In solving the Sodoku problem the uniform crossover with tournament selection combination gives the 

highest value (240.6) among others. 

 
Conclusion 

 

The present work involves the development of optimization algorithms to obtain solutions to timetabling 

problems. A literature survey conducted by us indicated that genetic algorithms could yield promising 

results. We were able to repeat some of this work and decided to use varying crossover methods with the 

tournament selection technique. It was also decided to check the validity of this procedure by applying the 

procedure to other problems as well. A new Uni-One-Point crossover technique was also introduced into 

this work.  

With the timetabling problem, which is our main topic in this investigation, the results obtained with all the 

genetic algorithm techniques (crossover/tournament selection) showed no drastic variations. They were 

comparable. The preferred highest value 39.3 was for the one-point crossover operator. With hard 

constraints some improvements were observed due to the increase of search area.  

  
Some soft constraints were introduced by allowing each instructor to pick 4 time slots and 4 rooms to his 

or her liking. The number of un-preferred classes is the score to compare. Thus, the best score is 0.   

  

As with hard constraints, the results for the soft constraints too were similar in all selected operators and 

the crossover techniques used. The preferred lowest values for the Uni-three-parent crossover and uniform 

crossover operators with tournament selection method were 17.7 and 18.7.   

With a reasonably large number of classes the Uni-One-Point crossover with tournament selection gave 

better results for hard constraints.  

 

The PSO and SA methods showed no impressive results when hard constraints were considered. With soft 

constraints it is noted that PSO, SA and GA with uniform cross over failed to find a feasible solution (one 

that satisfied all the hard constraints), thus their soft-constraint fitness was not considered. As future work, 

it might be worthwhile to change the parameters to obtain the desired results. 

 

It was also decided to check the validity of this procedure by applying it to other problems. One 

such application was to find the shortest possible distance travelled in the travelling salesman 
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  Crossover Type 

Tournament selection  

1 Uniform Crossover  240.6  

2 One-point Crossover  236.5  

3 Uni-One-Point Crossover  239.4  

4 Uni-three-parent Crossover  
233.3  

Figure 10: Sudoku unique count with 

tournament selection and different 

crossover methods. 

 

 

Table 9: Results of  

Sudoku method. 
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problem. The results obtained in this investigation are shown in Table-7 and Figure-8. Among 

them the lowest distance of 63980 was obtained with the Uni-One-Point crossover/tournament selection 

combination. The uniform crossover and Uni-three-parent crossover gave the forbidden higher values.  

 

With respect to the graph colouring problem, acceptable minimum number of colors was obtained with all 

the crossover operators except for the Uni-One-Point method. The results are as tabulated in Table-8 

(Figure-9). The lowest score of 92.7 was reported with the uniform crossover/tournament combination. 

 
With regards to Sudoku, comparable results showing the desired higher scores were obtained with all the 

techniques. However, uniform crossover yielded a slightly higher score of 240.6 (Table-9, Figure-10).  

The results obtained show that it may be worthwhile pursuing additional work by changing factors like the 

population size, operators and combining evaluation methods. Hybrid methods with genetic algorithms 

combined with other various optimization approaches using the newly adapted crossover and evaluation 

methods used in this study would very likely produce desired solutions for the scheduling problems.     
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