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Abstract 
 

  

Object-oriented programming (OOP) is one of the most used programming styles and is present in most 

of the Computing and Information Systems curricula. Teaching and assessing an introductory OOP course 

require students to write code to create and use class specifications to solve problems described by the 

text. Recent advances in AI assistants like GitHub Copilot, which uses a natural language machine learning 

model trained on billions of lines of code, became available as a free IDE plugin for use by students. 

Termed by GitHub as ‘your AI-Pair Programmer,’ Copilot can provide coding suggestions and generate 

correct and readable code in common programming languages. The use of Copilot in programming courses 

prompts educators to know about the capabilities of Copilot and how they could adapt their teaching by 

incorporating AI assistants that could generate code. This paper qualitatively evaluates the interactions 

with Copilot that provide code solutions and suggestions to use or create classes in an application. The 

result of this study is used to discuss the implications of students using Copilot, a free IDE plugin, and 

some possible measures that educators could adopt in their programming courses in response to the use of 

AI assistance for code completion and code exploration.  
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Introduction  
 

Object Oriented Programming (OOP) paradigm that is taught in most computing programs teaches good 

software development practices such as writing well-structured programs and efficient reuse of code and 

design. One of the critical challenges of teaching an introductory OOP course is due to its abstract nature 

and after having previously learned using an imperative programming method (Medeiros et al., 2019; 

Gutierrez et al., 2022). Students who would have struggled with the abstractness of imperative 

programming (Medeiros et al., 2019) might find it even harder to work with Object-oriented programming 

that requires them to abstract the entities into classes and model the entity relationships using object-

oriented principles. The basic Object-oriented programming concepts and structures may be intuitive for 

an experienced programmer. However, students new to programming have yet to encounter enough 

problems to appreciate good design practices and common coding patterns (Chibizova, 2018). Due to 

students' challenges while learning OOP, Yu et al. (2021) indicated that it is vital that the teacher tries to 

maintain an interactive learning environment and use a problem-based learning approach in which students 

learn the concepts by solving meaningful problems. When the students face a problem, they google the 

solution or ask the teacher, and they essentially learn by doing instead of being lectured (Chis et al., 2018).  

 

Recent developments in Large Language Models have opened immense possibilities for students to obtain 

coding assistance. One of the recent developments include OpenAI's Codex (Chen et al., 2021) that can 

generate multiple lines of code in response to a textual problem description. GitHub’s Copilot, which is 
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studied in this paper, is a programming assistant released by GitHub on June 2021 (Friedman, 2021), and 

it is currently integrated into several development environments, including Visual Studio Code, JetBrains, 

and Neovim. Copilot is made possible by the OpenAI Codex family of models, which is derived by fine-

tuning GPT-3 (Brown et al., 2022) on publicly available GitHub code repositories. Copilot makes the 

programmer's interaction with Codex more seamless because it allows obtaining suggestions as they type 

in the IDE, provides ways to prompt for alternative suggestions, and accepts Copilot's suggestions with one 

keystroke. GitHub dubs Copilot as "your AI pair programmer." Given the widespread use of IDEs to support 

problem-based learning and the capability to easily attach a free Copilot plugin that is available to students, 

it is unavoidable for educators to consider the impacts of AI assistance on teaching and learning 

programming (Becker, 2023). There could be ethical and academic integrity concerns in using AI assistants 

to generate solutions in coursework. Nevertheless, educators need to adapt to the reality that Copilot is a 

free IDE plugin and that penalizing the use of Copilot is practically impossible. Instead, a much more 

productive approach is to educate students and instructors about the advantages and challenges of using the 

AI-assistant feature of Copilot.  

 

This study presents two concrete scenarios of using Copilot to generate code inspired by basic tasks that 

students should learn in any object-oriented programming class. These tasks are: 1) Using a given class 

(file) to meet the requirements of an application; 2) Defining /Creating a class based on a given application's 

requirements stated in an application class (file). This study qualitatively explores Copilot's interaction 

capabilities to complete the two basic task scenarios to identify the interaction modes that students may 

encounter as they use Copilot associated with an IDE to get assistance with their programming assignments. 

 

 

Background Literature 
 

Machine learning advances, especially deep learning, have successfully generated code for general-purpose 

programming languages. For example, deep learning models using transformer architectures could 

recognize code structures using abstract syntax trees (Kim et al., 2021) and structural language models have 

remove any restriction on the vocabulary or structure so that code generation could be made possible for a 

general purpose programming language (Alon et al., 2020). While these methods had shown promising 

results, they still suffered from low accuracy and reliability (Tufano et al., 2019; Ciniselli et al., 2021). For 

instance, the RoBERTa-based only produces correct solutions for 7% of the tasks listed under a code search 

benchmark for retrieving relevant code given a natural language query (Husain. et al., 2019). Large 

language model (LLM) like ChatGPT3 is a game changer for automatic code generation (OpenAI & 

Pilipiszyn, 2021). Codex, a fine-tuned version of ChatGPT3, can solve almost 29% of unseen problems 

(164 problems with tests) using the first round of suggestions (without the programmer tweaking the 

solution). A fine-tuned model of Codex trained only on correct Python code solved 38% of the problems 

on its first attempt. If that model is allowed 100 attempts per problem, then at least one of the attempts was 

correct for 78% of the problems (Chen et al., 2021).   

 

The performance of a Codex model called Davinci was tested using 23 problems from a CS1 Python course, 

and it could solve 10 of them on the first attempt (Finnie-Ansley et al., 2022). Another study on the 

performance of Codex on CS2 tasks using Python showed that Codex performs as well as students in the 

top quartile of the class (Finnie-Ansley et al., 2023). In both these studies, OpenAI’s Codex capabilities 

include fixing a bug, generating documentation strings, step-by-step explanations, and code summaries. 

Finally, a study by Sarsa et al. showed that Davinci could create exercises, sample solutions, explanations, 

and tests (Sarsa et al., 2022). In this study, researchers submitted a Python docstring containing keywords 

describing the problem’s application domain and the programming constructs. Out of the 240 generated 

exercises, 75% seemed reasonable as they had included the programming construct, but 30% had no 
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solutions or tests. In summary, Codex solves a good percentage of problems on the first attempt but requires 

more than one attempt for most problems. This study uses the findings of these prior research to approach 

the AI-assistance as an imperfect tool and that the response generated by Copilot would depend on the kind 

of prompts that users provide.  

 

AI-based code generation tools suffer from inherent uncertainty and imperfection common to any AI tool. 

They may generate code with errors or ones that may differ from users’ expectations. A user study found 

no statistically significant difference in task completion time or task correctness scores when experienced 

programmers were using or not using a natural language-to-code plugin (Xu et al., 2021). Another older 

study showed that when people observed an automated system make errors, they began to distrust the 

system unless an explanation was provided about the nature of errors, but also that such explanations may 

lead to unwarranted over-reliance on the system (Dzindolet et al., 2003). These studies were done on the 

older models and the users involved in the study were experienced programmers, which makes it essential 

to conduct studies using Copilot and for users who could be students learning to write code for very basic 

programming tasks. 

 

While prior studies on the use of Codex and Copilot have focused on programs taught in CS1 and CS2 

courses that teach imperative and advanced programming using Python, no studies have explored how 

Copilot could be used to write programs that need to refer to pre-written Java classes.  Prior research on the 

use of Copilot to solve CS1 and CS2 problems were quantitative in nature did not explicitly detail what 

could have been the user’s experience while working with AI-assistance. This result of this study provides 

an important perspective for instructors that could inform teaching and learning by knowing about the 

capabilities of Copilot to aid coding assistance for novice learners in a Java OOP course. 

 

The Study 
Methodology 

 

The research questions that have guided this study are formulated as follows:   

 

• Research Question 1: How could code auto-completion by GitHub Copilot assist novice 

programmers in using and creating code associated with classes in an introductory object-oriented 

programming course?   

 

• Research Question 2: How do instructors and students with prior programming experience 

perceive the capabilities and usability of GitHub Copilot autocompletion in an introductory Object-

Oriented Programming course. 

 

This paper presents a descriptive case study that involves a contextual analysis and a thick description of 

the use of GitHub Copilot to solve fundamental problems that are typically encountered in an introductory 

programming course. While this study subjectively analyzes the experience of using GitHub Copilot to 

solve introductory object-oriented programming problems, it does so by framing the use of Copilot into 

two distinct usage scenarios. These usage scenarios were selected based on the researcher’s experience as 

a course instructor for introductory programming course. The researcher’s subjective experience as an 

instructor implies an unavoidable selection bias for picking the usage scenarios. Therefore, this study tries 

to provide an accurate and comprehensive description of the data collection procedures and documentation 

of every piece of information in order to achieve reliability of a case study. The researcher bias is also 

addressed by applying reflexivity and by validating the results through student surveys.  
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This study considers the responses of Copilot to generate code and suggestions for two main types of 

programming problem scenarios that occur in the early part of an introductory OOP course.  

 

1. Use-task scenario: The programmer writes textual (question) prompts as comments on the IDE, 

and the Copilot responds by writing code. The use-tasks problem scenario requires students to 

understand the code specifications written in the pre-written class and apply their knowledge of the 

class structure to create a desired application as required by a step-by-step statement of the problem. 

 

2. Create-task scenario: The programmer writes code statements on the IDE, and the Copilot 

generates code and suggestions to complete, fix, or extend the code. The create-type exercise aims 

to generate a class code whose methods and constructors will meet the requirements of an 

application. Each create-type scenario problem is also broken into ten steps, but each step, in this 

case, is a code statement that is either a constructor call or a method calls to the intended class. In 

addition, an additional question prompt will be provided to explain what each method and 

constructor should accomplish. Finally, the programming task is to let Copilot create the methods 

and constructors in the class to fulfill the method and constructor calls stated in the application. 

 

This study uses the JetBrains IDE and Java Programming language. Copilot can be downloaded and 

installed onto the IDE using a GitHub account. Copilot attempts to provide an inline suggestion on the IDE 

interface when the user pauses typing or presses Alt-\ or Enter. The suggestion is provided in italic grey 

font and can be accepted by pressing the tab key. For example, Copilot could provide suggestions to 

complete the current statement or generate code containing several statements.  

 

Generating the Question Prompts 

 

Question prompts and pre-written code are created to explore the interaction with Copilot. The question 

prompts are generated for application contexts familiar to students. Two problem scenarios, the use-task, 

and the create-task, are created for each application context. For each problem scenario, a file with pre-

written class code is created that will be referenced by an associated application. Each application context 

also includes an application class that uses a class code specifying an entity. If the class code specifies an 

entity used in the application, then the name of the class (and the file) will be the same as the entity name. 

If the class contains an executable application (with a main method), the name of the class will have the 

word "App" as the suffix. For example, Pizza.java is a file that specifies the Pizza class (or entity), and 

PizzaApp1.java is the class file for a Pizza application.  

 

In this study, classes were to model entities such as - Pizza, Coffee, Fish, Pet, Ice Cream, and Loan. Each 

of these entities were modeled as a distinct class in files Pizza.java, Coffee.java, fish.java, Pet.java, 

IceCream.java and Loan.java. The constructors and methods of described in these files are used in 

applications called PizzaApp1.java, CoffeeApp1.java, FishApp1.java, PetApp1.java, IceCreamApp1.java 

and LoanApp1.java, respectively. The same applications are re-written to run the create-task scenario on a 

different set of files – PizzaApp2.java, CoffeeApp2.java, FishApp2.java, PetApp2.java, 

IceCreamApp2.java and LoanApp2.java, respectively. 

 

Each use-type scenario associated with an application context uses a pre-written code that specifies the 

attributes, constructors, and methods of an entity. For example, a Pizza application has a pre-written Pizza 

class code saved as a file called Pizza.java. Another class with a main method that contains ten steps of 

textual instructions to call a method or a constructor from the pre-written class is associated with the same 

application. For example, PizzaApp1 class has a main method consisting of ten prompts, all written as 

textual comments. For the create-type scenario, the class that contains a main method has ten Java 
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statements that will either instantiate objects or call methods from an intended class. This intended class is 

written in a separate file that declares all the data fields as instance variables and lets Copilot write any 

required methods and constructors. For example, PizzaApp2.java will contain a class with a main method. 

The Pizza2App class will use the Pizza class that initially only defines the instance variables but not the 

methods and constructors. Copilot will complete the instance methods and the constructors of the Pizza 

class based on the constructor and method calls stated in the PizzaApp2 class. 

 

Running Experiments  

 

The question prompts for the use-type and the create-type tasks for each scenario were run many times until 

Copilot generated the desired solutions. All the input prompts and codes were entered during the initial run. 

Then each line containing the prompt was run by pressing the Enter key to allow Copilot to respond to that 

prompt. After Copilot responds to all the prompts, responses are noted, and a screenshot of the result is 

saved for future analysis. If Copilot produces incorrect, inaccurate, or undesired responses, the prompts are 

reworded to make them more specific before the next run. If the second run still does not provide desired 

solutions, the prompts are tweaked again, repeated at most five times until Copilot generates the desired 

and expected code. Every method, including the main method, gets a maximum of five runs.  

 

Applying Reflexivity 

 

Qualitative studies depend on subjectivity (Barrett, 2020), so researchers need to account for how 

subjectivity shapes their inquiry. Reflexivity is tied to the researcher's ability to make and communicate 

nuanced decisions as they generate data that tends to be influenced and intertwined by participants' real-

world experiences and practices (Finlay, 2002). In this study, the researcher evaluates the use of Copilot 

based on their subject perspective, which is shaped by their role as an instructor with prior experience 

developing and teaching object-oriented programs. As an instructor for multiple sections of OOP courses 

for a Computer Information Systems undergraduate program, the researcher's experiences as an instructor 

shaped the perspective that the abstractions and coding standards applied to an OOP course are new to most 

students.  

 

While students in an OOP class find it relatively easy to answer short-answer questions or write code 

snippets with only one solution possibility, having them design an application by figuring out the required 

entities leaves many design possibilities. Students often need help to generate and compare design choices, 

explain their choice, or even consider different ways to fix an error. The open-ended and context-specific 

nature of such problems requires students to obtain considerable assistance from tutors and instructors and, 

in some cases, even to validate their solutions. This teaching experience is one reason why the researcher 

was motivated to study the AI assistance provided by Copilot for OOP tasks that requires referring to a pre-

written code to generate an application for a given context.  

 

The researcher's prior experience as a programmer affords the ability to verify the code solutions generated 

by Copilot. However, a novice programmer may need help to verify the Copilot-generated solutions 

thoroughly and for the correctness or adequacy of the solution. The trust that novice programmers may 

develop for Copilot based on their experiences may dictate how exactly they might use the assistance 

provided by Copilot. It may not be ethical for the researcher, who is also an instructor, to test the use of 

Copilot by novice programmers when they have just begun to learn OOP. At this point, it needs to be 

clarified how much Copilot will help or hinder the learning process of novices. Therefore, the inability to 

involve novice programmers could impact how Copilot's interactions with the user are tested. For example, 

the researcher deliberately made the initial prompts vague to emulate how a novice would write the prompts, 

although the researcher knew how to write more specific prompts. Compared to the attempts the researcher 
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needed to produce the correct code, the number of re-attempts to obtain the correct or desired code could 

have been different for a novice. Therefore, without really involving students who have just begun to learn 

OOP, it was impossible for the researcher to quantitatively estimate the number of re-attempts novice 

learners would need to get Copilot to produce the required code. Therefore, the researcher decided to take 

the qualitative approach and provide a detailed narrative of the experience of interacting with Copilot so 

that the readers could understand the capabilities and limitations of the AI assistance and its possible 

implications on teaching and learning. 

 

Validating Observations 

 

To validate the researcher's observations about Copilot's interaction patterns and responses, six 

undergraduate students with senior level standing volunteered to run and tweak the question prompts. As 

part of a usability study assignment intended for a Capstone course, students from that course were asked 

to evaluate different types of user interfaces. The assignment samples were de-identified and used for this 

study. Six senior students from the Capstone class attempted to study Copilot by running the application 

scenarios created for this study. They all had attended the object-oriented programming class during their 

sophomore year and programmed using at least two languages. The students picked two application 

scenarios that were tested by the researcher and tried to get Copilot to generate code. The students wrote 

comments about their experiences of interacting with Copilot. Since this study aims to explore the 

interaction patterns and experiences of using Copilot, only three open-ended questions were asked. Students 

were asked to answer the following questions in about one paragraph: 1) Please comment on your 

experience of interacting with Copilot to complete the tasks provided to you. 2) Explain how you would 

like to use Copilot from now on. 3)Explain why you would have/have not used Copilot in your introductory 

programming class had it been freely available to you then.  

 
 

Results 
 

Use-Tasks  

 

Generating the first round of code using Copilot: The use-task prompts were entered as comments on 

the IDE. After entering a comment, the Enter key had to be pressed for Copilot to generate a code 

underneath the comment. After Copilot generated the first line of code, the next prompt was entered as a 

comment on the IDE to generate the next required line of code. In some cases, a single prompt could 

generate multiple lines of code. It was observed that Copilot generated a Java statement in response to each 

textual prompt and did not respond to a prompt by predicting the textual prompt. Figure 1 shows an example 

of a set of initial prompts and their responses during the first round of entering all the prompts under the 

main method. There are errors in lines 5, 11, 13, 15, and 19. In this initial run, the error rate, which is a ratio 

of the correct responses to the number of prompts, is 5/10 (or 50%).  

 

In the initial prompt shown in Figure 1, there is no explicit mention of the type of constructor to create the 

object. The Pizza.java class only mentions one type of full-argument constructor with five parameters. 

Additionally, there are no default constructors specified in this class. Therefore, instantiation of the Pizza 

object in line 5 of Figure 1 has an error because it generates a default constructor not specified in the Pizza 

class. Copilot does not further explain why the instantiation has an error in it. Instead, IDE’s quick-fix 

feature (that is not powered by AI) provides several other suggestions to fix the error, which were not 

feasible for the given problem. For example, one suggestion includes creating a default constructor, which 

is not allowed in this problem and requires explicitly using the Pizza.java class (exactly as it is, without any 

further modifications, such as adding an extra default constructor). Meanwhile, the error report (which is 
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not powered by Copilot) provided by the IDE informs that “'Pizza(java.lang.String, int, int, int)' in 'Pizza' 

cannot be applied to '()'” , which indicates that the number of arguments required for the constructor 

compared to what was actually provided. Line number 15 also has another instantiation error. Other errors 

in lines 11, 12, and 19 result from the use of incorrect method names in the method call. Copilot generated 

these method names based on the prompt that needed more specificity to provide the exact method name. 

 

Respecifying the prompts to generate code using Copilot: During the next run, the prompts are rewritten 

with more specificity, such as providing the class name, type of constructor, and exact names of the 

attributes. After inspecting and respecifying each prompt that had generated an incorrect answer, all the 

prompts were rerun to see if the change in one of the prompts would have improved the solution. Figure 2 

above shows the correct responses produced by Copilot after the fifth prompting attempt for the Pizza 

application. Even after getting rid of all the errors, the construction of the Pizza object in line number 7 

does not obtain the parameter values for cheese toppings, pepperoni toppings, and ham toppings from the 

users, as intended in the prompt. For Copilot to write the code to obtain user inputs, the prompts may need 

to instantiate, for example, a Scanner or a JOptionPane class and then specify appropriate methods from 

this class to obtain and parse the user inputs. Copilot will also need to be directed to output comments for 

the user to provide the required input values corresponding to the data fields in a Pizza object. As a test, 

when, when Copilot was prompted to get the value of the size parameter from the user, it responded with 

another textual prompt that was repetition, but this time, to get the value of the next set of parameters. 

Although it did not generate any code, it seemed as if Copilot could predict the next course of actions that 

would be highly probable. It could have generated an appropriate code, instead of more textual prompts, if 

the prompts were specified step-by-step and in more detail. 

 

 
Figure 1: Use-type task prompts at the first attempt for a Pizza Application 

 

After repeating the prompting experiments on ten different application contexts, each with its user-type 

scenario, it was observed that Copilot could generate, after repeated attempts, many of the required 

statements without errors. However, even if the code generated by Copilot is error-free, it still did not meet 

all the expected requirements of the task.  
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Figure 2: Use-type task for the Pizza application after the 5th attempt. 

 

 

 
Figure. 3: Multiple Code options provided by Copilot 

 

In addition to generating the code in response to a prompt, Copilot also allows the exploration of multiple 

auto-completion options for one or more tasks associated with the required line of code. Figure 3 shows the 

IDE interface with Copilot code suggestions pane on the right side. These suggestions contain several 
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different statements that the user can choose. In the example above, however, the suggestions included 

more lines of code than required, and this is because Copilot, just like Codex, generates responses based on 

the probability of occurrence of tokens, and it could anticipate the next couple of lines of code that the user 

may request. For example, in Figure 3, in addition to calling the getDescription method, Copilot suggests 

setting the instance variables, which is not required for the given problem. 

 

Create-Task Response  

 

Suggestion for actions by the IDE: Figure 4 shows the prompts for a create-task problem, which in this case 

will be Java statements provided as prompts in the main method of an application, PizzaApp2.java, that 

calls the constructors and methods of the Pizza class. As expected, there are errors in the statements in the 

PizzaApp2 class because, for the create-task problem scenario, the constructors and the methods of the 

modified Pizza class will need to be specified. This because, before running the create-task prompts in the 

PizzaApp2 class, all the methods and constructors of the Pizza class used in the use-task scenario were 

removed to test if Copilot could generate them. The IDE detects the errors in the application code ), as in 

Figure 4) and provides one or more quick fixes to resolve the error, as seen by the red-colored 'light bulb' 

on the left side of the IDE screen. Please note that these quick fixes are part of the IDE and unrelated to the 

Copilot actions. Out of the different types of suggestions provided by Copilot, one relevant suggestion is to 

create a constructor, although it did not specify the type of constructor. Even though the suggestion of a 

'Dummy' constructor is misleading, clicking this suggestion causes the IDE to insert a constructor template 

in Pizza.java, as shown in Figure 5.  

 

 

 
Figure 4: Create-type task prompts provided as code and quick-fix by the IDE in PizzaApp2.java 

 

 

.  
Figure 5.: Constructor generated by the IDE following the quick-fix 
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Figure 6: Constructor generated after the 2nd attempt 

 

 
Figure 7: Method stubs generated by Copilot. 

 

Generating a Constructor: Figure 5 shows the IDE's constructor ( and not Copilot's constructor) generated 

in the Pizza class. While this constructor has the required number and types of parameters, it does not insert 

proper names (which should have been the names of the instance variables) to make the code more readable 

and to meet the coding best practice. The constructor stub also lacks the assignment of the parameters to 

the instance variables. Instead of using the quick-fix feature of the IDE to generate the method stub, we 

could have directly prompted Copilot to generate the required constructor in the Pizza class. However, the 

IDE was used in this case to see if Copilot interfered with the quick-fix feature of the IDE. From this 

experience of using the quick-fix feature and many more instances that used this feature to generate method 

stubs, it is evident that the traditional assistance features that were always available in the IDE prior to the 

Copilot plugin were not modified by the introduction of Copilot features.  

 

Figure 6 shows the results after manually renaming the parameter variables of the constructor. The next 

step was to prompt code generation by the Copilot by manually typing the first statement inside the 

constructor that assigns the value to the instance variable size. After that, Copilot predicted the rest of the 

statements to assign values to other instance variables and autocompleted lines 23,24,25, and 26. While 

lines 23,24 and 25 were the expected responses; line 26 was syntactically correct but different from what 

was desired. Copilot had assigned the instance variable called cost with a value returned by calling the 

calcCost() method. While this does not throw an error, calling an instance method inside a constructor is 

not a good practice. So far, the prompts have been tweaked two times- once to pick the constructor stub and 

next to generate the statements inside the constructor body. During the third run, the prompt is more explicit 

by specifying that the cost must be assigned the default value of 0.0.  
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Generating the method stubs: In response to the method calls for the setters in the Pizza2.java application 

class, as shown in Figure 4, the quick-fix feature of the IDE generated the method stubs for the setters in 

Pizza.java. In the initial run for each setter, the setter method stubs generated by the IDE, as shown in Figure 

7, do not specifically describe any details of the algorithm inside the methods. The IDE will only generate 

syntactically correct method stubs based on what it infers about the application's method signatures. In 

some cases, the default return types were incorrect, and the names of the parameters did not follow the 

naming conventions. However, the IDE will allow the user to choose the correct return type and the 

parameter name before accepting the method stub. Until this point, Copilot was not involved in generating 

the method stub. Copilot will be used only to generate the method body. Instead of using the quick-fix 

feature of the IDE, a programmer could also directly write a textual prompt in the Pizza class to generate a 

required setter. However, the IDE was used to see if Copilot could moderate the limited assistance provided 

by the IDE. 

 

 
Figure 8: Code for a method called calcCost() after 4 attempts ( and specifying 4 prompts) 

 

Prompting Copilot to generate the method body: Copilot is prompted to generate the code that should 

go inside a method's body. In some cases, even before writing a textual prompt, or the first line of code, 

Copilot can infer the possible code purely based on the method name that follows a standard naming 

convention. If the code cannot be inferred by Copilot, helping it by adding the first line of code could 

generate an auto-completion of the rest of the required statements. However, in all cases, the user must 

verify Copilot's suggestions before accepting and, if needed, alter the code to fit the problem description. 

Figure 8 shows the textual prompts (as comments) for the calcCost() method and the code generated as a 

response to the prompts. This method required two runs to complete the method body. The initial prompt, 

"return the total cost of the Pizza object," did not generate any code suggestions. The second run required 

writing a portion of the initial part of the first 'if' statement and Copilot generated the rest of the code without 

any further prompt. The textual prompt in line 54 in Figure 8 generated the required code in lines 55- 57. 

Specifying the rest of the prompts (lines 59 and 63) also generated the required code without error. Each 

instance of providing a prompt (textual or the initial portion of a statement) is considered a run. The 

calcCost() method needed four runs to complete the method body. All the methods written for this study's 

application scenarios were simple. They had at most eight lines of code consisting of arithmetic and logical 

operators, simple decision structures, simple loops, the use of Math class, and print statements. 

 

Task Response Analysis 

 

Six different application scenarios were tested for the use-type and create-type tasks. Table below shows 

the application scenarios and final correctness of the generated code along with the number of times the 
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prompts were re-written. The results show that the total number of runs required to obtain or improve the 

solutions of use-type tasks varied even though the initial prompts were similar in complexity for every 

application domain. Prompts had to be rewritten for most cases by making them more specific such as using 

the same method name and giving instructions resembling a pseudo code. In addition, the applications 

needed to learn how to obtain input values from the user based on a very high-level specification, so the 

final accuracy is 90% (9 out of 10 prompts yielded a correct answer).  

 

The create-type tasks require writing a constructor and multiple methods. The number of attempts to obtain 

the code for a constructor or method's body depended on the prompts' specificity. For example, the 

constructor's code that Copilot inserted was syntactically correct but did not always follow the best practice 

and, therefore, needed additional prompting. In the case of setters, even if the method body had just one 

clear-cut statement that assigned the parameter value to the instance variable, the directions had to be 

specified during the second run. Therefore, even if Copilot generated syntactically correct code, 

programmers must clearly understand the program's functionalities and naming conventions to produce 

valuable, readable code. Even more important is that the programmers should know what the desired code 

should look like based on prior exposure so that they can validate the results or tweak their prompts to 

produce the desired response.  

 
Table 1: Results – accuracy and number of attempts for the tasks 

Accuracy of Use-type Tasks 

Attempt for each application 

with 10 prompts leading to 

method/ constructor calls  

PetApp PizzaApp CoffeeApp FishApp LoanApp IceCream

App 

1st 50% 50% 50% 90% 30% 100% 

5th 50% 90% 50% 90% 30% 90% 

Number of attempts for Create-type Tasks 

 Pet 

class 

 

Pizza 

Class 

Coffee 

Class 

Fish 

Class 

Loan 

Class 

IceCream 

Class 

Number of Attempts to 

generate a required 

constructor  

2 5 3 2 4 2 

Number of Attempts to 

generate a getter  
1 1 1 1 1 1 

Number of Attempts to 

generate a correct setter  
2 2 2 2 2 2 

Number of Attempts to 

generate a correct method  
2 4 3 2 3 4 

 

Student Volunteer Perceptions 

 

Student responses to the question- "1) Please comment on your experience of interacting with Copilot to 

complete the tasks provided to you" indicated that students were "surprised by the fact that it was so easy 

to generate code" but also mentioned that "prompts have to be very precise if one were to expect reliable 

answers." They all reported that it took more than one round of re-writing a prompt or, sometimes, 

even "starting to write the code" to generate the correct response from Copilot. A student mentioned that 

they "tinkered with the suggestions" that Copilot had provided, although they had ended up with a "messier 

code." than what was intended. One of the students found this exercise to be a "good review" of what they 

had forgotten, and the Copilot helped them "jog their memory." Four out of six students mentioned that 

they found the autosuggestion and autocompletion of one or more sentences "handy." However, students 

also mentioned that the autosuggestions sometimes seemed "confusing." However, many agreed they had 



Issues in Information Systems 
Volume 24, Issue 4, pp. 66-81, 2023  

 
 

78 

 

to have "prior programming experience" to verify if the solutions produced by Copilot were correct. They 

mentioned that Copilot is a good "productivity tool" to save time figuring out the syntax. 

 

Student responses to the question – "2) Explain how you would like to use Copilot from now on." All 

students mentioned that they would continue to explore the use of Copilot and would use it in their jobs if 

needed. One student expressed the intention of "practicing coding skills" by "exploring the suggestions" 

provided by Copilot. They all felt that AI assistants could be part of their daily jobs in the future. 

 

Student responses to the question – "3) Explain why you would have/have not used Copilot in your 

introductory object-oriented programming class had it been freely available to you then." Five out of six 

students responded that they would have used Copilot somewhat. Four out of six students had mentioned 

that they had all used Google/Stack Overflow to find answers or get sample codes and that having Copilot 

give suggestions right through the IDE would have been beneficial. Five students mentioned that they were 

unsure how using Copilot would have impacted their learning and problem-solving ability.  
 

 

 

Discussion 
 

An imperfect AI-assistant 

  

The problems used in this study were elementary applications of object-oriented concepts. They did not 

include advanced concepts such as object-oriented design patterns or relationships such as inheritance, 

composition, or aggregation that may need an application to reference multiple classes. An analysis of the 

re-attempts at obtaining the desired code shows that the Copilot actions can be classified into two main 

categories: 1) code autocompletion and 2) providing multiple options for code completion. Autocompletion 

of code requires the user to think critically before accepting the suggested completion. Selecting from 

multiple options for code completion requires the user to compare multiple ways of completing the program 

before picking or picking one of the options. Not all autocompletion or suggestions may not always lead to 

correct or desirable results, and the user may need further actions such as re-prompting Copilot or manually 

writing code as part of further actions. This observation suggests that while Copilot could autocomplete 

code and save students from making syntax errors, the user will still need to learn to verify the results using 

their programming knowledge of OOP and an accurate understanding of the problem’s requirements. Even 

though Copilot can generate comments to explain what a line of code does, it can’t explain the choices it 

provides, or the code it completes, like an actual human could. 

 

Implications for Teaching and Learning 

 

AI assistant has substantial implications for how educators teach and assesses programming knowledge. 

Educators should stop using trivial problems that have only one solution. Minor problems with 

straightforward and specific prompts could quickly generate correct solutions within the first attempt. More 

comprehensive, multi-step problem statements that require students to explain their code will help students 

develop their ability to critically analyze their choices and decompose a problem to generate the prompts. 

Object-oriented programming requires students to focus on program structure in addition to making 

algorithmic choices to produce clean, readable, reusable code.  

 

Any good programmer should be able to explain design choices, including the choices made to call a 

particular method or constructor, specify methods and fields, use a particular algorithm, and name a variable 

or a method. Copilot provides autocompletion based on the probability it learned from training a large code 

repository. On the other hand, a programmer chooses the coding statements based on their understanding 
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and could explain their rationale. Therefore, including the need to explain one’s code and design choices 

should become an essential part of programming pedagogy that uses Copilot. Furthermore, the problems 

used to assess a student’s programming abilities should extend beyond their ability to solve ‘toy problems’ 

with only one clear-cut solution. This study shows how Copilot can generate solutions for simple problems 

with just one or two prompts. Instead, the pedagogy could include open-ended problems with many possible 

solutions. One assessment criterion should be the ability to explain algorithms or design choices for a given 

context.  
 

 

Conclusions 
 

This study investigates the interactions with Copilot that could generate and autocomplete code and provide 

programming suggestions with very few attempts. The programming tasks used for this study were very 

context-specific and required referring to pre-written codes and the problems used to test the interactions 

were very simple compared to the problems that students would solve when they complete a semester of 

OOP course. The results show that even for solutions to minor problems, the programmer needs to verify 

the code and multiple suggestions generated by Copilot. Both the student volunteers and the researcher who 

interacted with Copilot in this study have prior programming experiences and know what kind of solutions 

to accept from Copilot and how to tweak the prompts with more specific information about the 

programming task. 

 

Observing novice students interact with Copilot is necessary to know how much they would trust it, how 

well they will write the prompts, or even if they will know how to recognize a correct solution. Nevertheless, 

this study shows how Copilot may not be a perfect AI assistant and may not explain the rationale behind 

its choices for autocompleting the code. Therefore, students could be instructed about the pitfalls of relying 

too much on Copilot, especially during the initial stages of learning how to write code. At the same time, 

Copilot’s ability to provide coding suggestions is worth exploring since its ability to provide multiple 

suggestions could teach students to evaluate the possible design choices and coding actions critically. With 

appropriate scaffolding and pedagogical approaches, computer programming courses could facilitate 

learning by experimentation.  
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