
Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

328

DOI: https://doi.org/10.48009/1_iis_2023_128

Node.js or PhP? Determining the better website server backend

scripting language

Qozeem Odeniran, Georgia Southern University, qo00109@georgiasouthern.edu

Hayden Wimmer, Georgia Southern University, hwimmer@georgiasouthern.edu

Carl M. Rebman, Jr., University of San Diego, carlr@sandiego.edu

Abstract

Most people interact with websites expecting them to perform quick results and provide quick responses to

their requests and many do not realize the performance is due to server side or backend programming.

There are several types of backend web framework/scripting technologies. Programmers and developers

often debate over which is the technologies is the better solution. Most debates are based on various

dimensions such as performance, scalability, and architecture. The most common factor for settling the

debate or choosing the most appropriate frameworks tends to be the performance dimension. This study

assesses the performance of both Node.js and PHP by implementing well-known algorithms of binary,

bubble, and quick sort along with Heap’s algorithm for permutations. These algorithms were selected for

their increasing time complexities which allows us to observe the performance differences between the

backend framework/scripting. By comparing the performance of these two backend scripting technologies,

one can gain a better understanding of the circumstances when migrating from PHP to Node.js would be

beneficial. Our results showed that a significant difference occurs in the performance of PHP and Node.js

and specifically, Node.js outperformed PHP in terms of latency and other performance metrics. This study

provides valuable information for software engineers, developers, and managers who are seeking the best

framework for their web applications.

Keywords: Node.js, PHP, backend scripting technologies, sorting algorithms, performance, Apache JMeter

Introduction

Back-end scripting technologies are crucial in web development, as they greatly enhance the development

of web applications and services. The popularity of backend scripting technologies is constantly evolving,

with new backend scripting technologies emerging on a regular basis. Some popular backend platforms are

PHP, node.js, Django, Flask. Ruby, PERL, and ASP.net. PHP is one of the nost popular development

platform and is one of the oldest web development platforms. PHP is a powerful language even though

modern applications are transitioning away from PHP. PHP most likely will remain a viable development

platform due to the amount of legacy code that is powering the interweb. For performance and scalability,

the current language of choice is JavaScript, and it is the fastest growing web development platform referred

to as node.js.

PHP, otherwise known to many as personal home page (although it really stands for PHP Hypertext

Processor) has been around since 1996 and is considered quite easy to use

(https://www.softwareengineerinsider.com/programming-languages/php.html). PHP evolved over a need

to be able to make more responsive and interactive web pages than what regular static HTML can offer.

https://doi.org/10.48009/1_iis_2023_128
mailto:qo00109@georgiasouthern.edu
mailto:hwimmer@georgiasouthern.edu
mailto:carlr@sandiego.edu
https://www.softwareengineerinsider.com/programming-languages/php.html

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

329

PHP is a general-purpose scripting language that works well with web development and is mainly used for

dynamic webpages, while Node.js developed on chrome’s JavaScript runtime for developing fast and

scalable network apps (Lei et al., 2014). It supports object-oriented programming, is open source, simple

to learn, and integrates well with HTML. Even now, PHP is still used as the back-end scripting technology

for many millions of websites. To execute it successfully, a server and PHP editor are required. The most

recent version is PHP-8.

Figure 1: A basic PHP code inside HTML page.

Node.js is a younger language than PHP and like PHP it was developed to help make more interactive web

pages that could collect data from webforms (https://www.section.io/engineering-education/history-of-

nodejs/). Node.js adopts an event-driven, non-blocking I/O style which efficient handling of large

concurrent connections and is based on Chrome’s JavaScript runtime. Whenever a request is received by

Node.js server, the event is placed on a queue while node.js event loop picks up the event and handles it

asynchronously. This makes node.js to simultaneously handle multiple requests without event-loop

blockage or performance issue. On the other hand, when PHP executes, a PHP interpreter processes it on

the server-side which generates a Hypertext Markup Language (HTML), or other output that can be sent to

web browser’s client (Prayogi et al., 2020). With over 800,000 GitHub repositories, businesses are seeing

the advantages of Node.js more and more. On GitHub, JavaScript is now the most widely used language.

Figure 2: A basic node.js code

Determining the best backend web framework is an issue that concerns developers and managers alike. One

of the challenges is that there are many different types of technologies out there and it is not always easy to

know which is best for your application. Another factor is that some technologies either cannot work on

some platforms, or they do not perform well. In fact, making the wrong decision can cause the application

to fail. Node.js and PHP are two popular backend scripting technologies that many developers have adopted

for building web applications. Both technologies dominate the internet because they work well on many

platforms.

This study compares both PHP and Node.js in terms of performance using common sorting algorithms and

a heap algorithm to generate all possible permutations. The goal is to provide a comprehensive analysis of

the performance of these two backend scripting technologies in handling complex algorithms and

processing large data. Understanding and analyzing their performance characteristics is critical to the

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

330

success of one’s application and both technologies have unique features. This understanding can lead

management and developers to select the framework that suits their development needs.

This study aims to provide insights that can help organizations and software engineers make a well-

informed choice on which backend scripting technologies to adopt for their web development projects. The

rest of this paper is structured as follows. First, is a discussion of the relevant literature, followed by our

methodology and test results. Results indicate that Node is a more efficient backend web framework but

there are additional considerations which must be reviewed by developers and managers to select the most

appropriate framework for the application.

Literature Review

Information systems play crucial roles in business processes in educational institutions, from student and

course registration to end-of-semester/session evaluations and graduation processes (Prayogi et al., 2020).

Prayogi et al. (2020) was interested in the fact that data exchange within those systems becomes

increasingly important and their research study was to prototype the development of a REST API. This API

was specifically for academic information systems and meant to analyze its performance by implementing

it using two different server technologies: PHP and Node.js. The prototype that Prayogi et al. (2020)

implemented was developed using a database with one sample table representing employees in a college,

and two different endpoints were created for the implemented REST API. In the experiment, Apache JMeter

was used to simulate a thousand concurrent requests on the database .Node.js consistently outperformed

PHP in the experiment, achieving a 100% throughput for all concurrent 1000 requests, while PHP recorded

a throughput of only 48.70% under the same conditions (Prayogi et al., 2020).

Chaniotis et al. (2015) discussed the implications of developing end-to-end web applications in the social

web era and examines a distributed architecture suitable for modern web application development. The aim

of their study was to find the most efficient and scalable technology stack for web application development

in the current social web era. They conducted stress tests on popular server-side technologies, including

PHP/Apache stack, Nginx, and Node.js, to determine their efficiency and scalability. The study found that

the PHP/Apache stack was not efficient in handling increasing demand in network traffic, while Nginx was

more than 2.5 times faster in I/O operations than Apache. Node.js outperformed both in I/O operations and

resource utilization but lacked in serving static files. The study concluded that building cross-platform

applications using web technologies is feasible and productive, and Node.js is an excellent tool for

developing fast, scalable network applications that offer client-server development integration and aid code

reusability (Chaniotis et al., 2015).

Raharjo (2014) compared Node.js and the PHP/Nginx web development stack and analyzed their

performance and scalability. The study assessed and compared the performance and scalability of Node.js

and PHP/Nginx web applications using a load generator. The study also designed mock applications based

on the Dijkstra Algorithm and utilized the load generator to simulate concurrent user requests and assessed

the performance and scalability of Node.js and PHP/Nginx web applications. The study determined that

Node.js applications performed better and were more scalable than PHP/Nginx applications (Raharjo,

2014).

Lei et al. (2014) highlighted the significance of large-scale, high-concurrency, and data-intensive web

applications in the latest generation of websites. Node.js has become popular for building such applications.

Lei et al. (2014) were interested in comparing the performance of Node.js, Python-Web, and PHP in

constructing data-intensive web applications using benchmark and scenario tests. Lei et al. (2014)

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

331

conducted benchmark and scenario tests to compare the performance of Node.js, Python-Web, and PHP in

creating data-intensive web applications. The benchmark tests assessed performance data, while the

scenario tests simulated realistic user behavior. The study results revealed that Node.js has a much higher

capacity than PHP and Python-Web for handling requests within a specific time frame. The authors

concluded that Node.js is lightweight and efficient, making it an excellent choice for I/O intensive websites.

PHP is only suitable for small and medium-scale applications, while Python-Web is developer-friendly and

suitable for large web architectures. This study is the first to assess these web programming technologies

using both objective systematic tests and realistic user behavior tests, with Node.js being the primary focus

of discussion (Lei et al., 2014).

Odeh (2019) compared the quantity of websites on the internet between 1995 and 2018 using the C#

programming language. The study offered a critical analysis and useful advice on how to use a web

programming language to create a high-quality product. The study considered web developers' experiences

and views on PHP, ASP, and web development as well as other comparison criteria such as cost,

performance, readability, understanding, maintainability, editing & deployment tools, platform, database,

webservers, core-language, synthetic character, webpage structure. The knowledge, application domain,

platform being used, and other considerations all play a role in the decision between ASP and PHP. While

ASP is more dependable and effective than PHP, PHP is better suited for developers who are more familiar

with Microsoft products. Both are appropriate, but C# is a safer language in terms of server-side web

application development (Odeh, 2019).

The readability, writability, and dependability of six regularly used programming languages are compared

in Ahmed et al. (2021) study: C, C++, Java, Python, JavaScript, and R. The analyzed the competitive

advantage and tradeoffs in the different languages use in various applications. A survey was used to collect

data, and a theoretical comparison was performed to analyze the value of these criteria and their impact on

the decision-making process of selecting a programming language. Ahmed et al. (2021)’s research devised

a novel method for comparing the six programming languages by using a metric evaluation system to

evaluate each language by using the categories 'Bad,' 'Moderate,' and 'Good.' A poll was also undertaken to

validate the appraisal of this metric system, with a group of people answering a series of questions. The

most readable and writeable languages were found to be Python and R, with Java having an advantage in

terms of reliability (Ahmed et al., 2021). According to a poll, Python is the programming language of choice

for beginners and non-programmers, although Java is favored by seasoned programmers due to its

dependability. Theoretical analysis and survey findings were complementary, with Python excelling in

readability and writability and Java excelling in reliability. Expert programmers might, however, favor the

language in which they feel the most at ease.

Adebukola and Kazeem (2014) researched the evolution of web scripting languages from CGI to PHP and

ASP.NET . Open source, PHP is a commonly used server-side scripting language that can be integrated

into HTML. Microsoft's ASP.NET web development platform enables programmers to create dynamic web

apps using compiled languages like VB.NET and C#. Scripting languages are progressing on many fronts,

but businesses still have the difficult but important task of comparing options to determine which one best

suits their particular requirements (Adebukola & Kazeem, 2014). The focus of the research study was to

analyze and contrast the effectiveness of PHP and ASP.NET, the two most widely used dynamic scripting

languages for online development. The study noted that WAPT software is used to evaluate PHP and

ASP.NET for online application development. They focused on measuring the response time, which is the

amount of time it takes for a client to send and receive a request, to assess the performance of online

applications created using PHP and ASP.NET. Performance tests were run to determine the average,

minimum, and maximum reaction times while the two technologies remained the same during the

development of the program. The most significant performance indicator is thought to be response time.

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

332

PHP has a faster reaction time under stress and endurance tests, making it a superior choice for online

applications (Adebukola & Kazeem, 2014).

For online applications that require lots of data, Node.js is gaining popularity (Brar et al., 2021). Due to its

event-driven, non-blocking I/O approach, Node.js is growing in popularity, and Brar et al. (2021)’s study

employs objective benchmark testing and accurate user behavior testing to assess its performance. Brar et

al. (2021) utilized benchmark tests and scenario tests to evaluate the performance of Node.js, Python-Web,

and PHP. The test results provide some insightful enforcement data, demonstrating that Node.js can handle

far more requests in a certain period than PHP and Python-Web can. Three key tests were run in Brar et al.

(2021)’s experiment to gauge how well Node.js, Python Web, and PHP performed. Node.js fared better

than Python Web and PHP, according to the results, in terms of average requests per second and latency

per request. Python-Web, Node.js, and PHP are mature frameworks for large-scale websites (Brar et al.,

2021).

Challapalli et al. (2021) examined the process of creating websites in the past and present, the evolution of

content delivery over time, the uses of websites, websites for mobile devices, and a performance

comparison of the two most popular web backend development languages, namely Node.js and Python.

The study found that Node JS outpaced Python at processing requests, processing about 250 times as many

requests as Python in a 30-second period. As the number of users increased, Node JS's requests per second

increased rapidly, whereas Python's increase was steady and gradual. The failure rates in both situations

were 0%. Python's average response time was roughly 2040ms, compared to 7ms for Node JS. While

Python's latency climbed dramatically as the number of users increased, plateauing at 14000ms near the

end of the test, with an average delay of 7187ms, Node JS had an average latency of 1.04ms (Challapalli et

al., 2021).

Methodology

This study compares the efficiency of two backend programming languages and technologies, PHP (old)

and Node.js (new) using a four types of sorting algorithms; binary sort, bubble sort, quick sort and heap

algorithm. The research goal is to identify the most optimal backend language or scripting technology that

can provide a maximum performance with regards to latency which is defined as time taken for a request

to reach the server and receive a response.

Sorting Algorithms

Sorting algorithms are procedures for sorting items according to a specific order. Unsorted items are

reordered based on a specific criterion, such as alphabetical or numerical. Sorting algorithms are classified

based on their space and time complexities, stability, comparison, or non-comparison-based nature. The

following is a quick description of the four algorithms used in this study.

Binary Sort is a simple sorting algorithm that works by comparing each element with the elements that

precede it and swapping them if they are in the wrong order. This algorithm uses a divide-and-conquer style

whereby it divides the array into two equal halves, sorts each half individually, and merges them back

together. Elements in the left and right sub-arrays are compared by the merge operation, which then merges

them into sorted order. Until the full array is sorted, this procedure is repeated. . If the array is in a sorted

order, binary sort has an O(n2) worst-case time complexity and a best-case time complexity of O(n log n).

Binary sort is advantageous in situations when the input data is mostly sorted or for tiny lists.

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

333

 Figure 3: Binary Sort in PHP (left frame) & Node.js (right frame)

Bubble Sort is an algorithm repeatedly swaps adjacent elements in a list until the entire list is sorted.. This

sorting algorithm analyses adjacent elements and swaps them if they are in the wrong order as it iteratively

moves through the list to be sorted. Until the list is sorted, this trip through the list is repeated. The smaller

components "bubble" is passed to the top of the list with each run, hence this technique is known as bubble

sort. The worst-case and average time complexity of bubble sort, where n is the total number of elements

to be sorted, is O(n2). It has a worst-case time complexity of O(n^2) and a best-case time complexity of

O(n) when the input data is already sorted. Bubble sort is not very efficient and is generally only used for

small lists

Figure 4: Bubble Sort in PHP (left frame) & Node.js (right frame)

Quick Sort is a divide-and-conquer algorithm that works by selecting a "pivot" element from the array and

partitioning the other elements into two sub-arrays, according to whether they are less than or greater than

the pivot. This sorting technique divides an array or list of elements into two sub-arrays, one of which

contains elements less than a pivot value and the other of which contains elements greater than or equal to

the pivot value. The sub-arrays are then sorted recursively. It has a worst-case time complexity of O(n^2)

but typically performs much better, with an average time complexity of O(n log n). Quick sort is widely

used and is often the preferred algorithm for large data sets.

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

334

Figure 5: Quick Sort in PHP (left frame) & Node.js (right frame)

Heap Algorithm is a recursive algorithm that generates all possible permutations of a given set. It works

by swapping elements in the set and recursively generating permutations of the remaining elements. The

for loop iterates over each element of the array, and for each element it calls heapPermutation with a reduced

array size of $size-1. The swap operation is performed depending on whether $size is odd or even. If $size

is odd, the first element of the array is swapped with the last element, otherwise the $ith element is swapped

with the last element. It has a worst-case time complexity of O(n!), where n is the number of elements in

the list. Heap algorithm for permutation is useful for cases where all possible permutations of a list are

required.

Figure 6: Heap Algorithm in PHP (left frame) & Node.js (right frame)

Algorithmic Complexity

A measure of an algorithm's effectiveness or efficiency is its algorithmic complexity. It is typically stated

in terms of the number of steps needed to run the algorithm in relation to the size of the input. Time

complexity and spatial complexity are the two most popular metrics for algorithmic complexity. Time

complexity measures the number of computational steps required to execute an algorithm as a function of

the size of the input data. The most common notations used to express time complexity are O, Ω, and Θ.

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

335

Big O notation is the most used notation to describe time complexity, and it represents an upper bound on

the number of steps required by the algorithm. Ω notation represents a lower bound on the number of steps,

and Θ notation represents an average or tight bound on the number of steps. Space complexity, on the other

hand, measures the amount of memory required by an algorithm to execute as a function of the size of the

input data.

The analysis of algorithmic complexity is important because it helps us understand how an algorithm will

perform on different input sizes and allows us to make informed decisions about which algorithm to use for

a particular task. In general, we prefer algorithms with lower time and space complexity because they are

more efficient and faster. However, the choice of algorithm also depends on other factors, such as the

problem domain, the input size, and the available resources.

Table 1: Time Complexity Table of Sorting Algorithms

Algorithm / Time Complexity Best Case Average Case Worst Case

Quick Sort O(n log n) O(n log n) O(n2)

Binary Sort O(1) O(n log n) O(n log n)

Bubble Sort O(n) O(n2) O(n2)

Performance Goal, Statement of Research Objectives and Research Questions

Performance Goal:

There is a significant difference between the performance of PHP (old) and Node.js (new) backend scripting

technologies.

Research Objectives:

 To compare the performance of PHP and Node.js using binary sort, bubble sort, quick sort, and

heap algorithm.

 To determine which algorithm performs better in PHP and Node.js

 To provide recommendations for choosing the appropriate backend scripting technology.

Research Questions:

 RQ 1: Is node.js faster than PHP when it comes to Sorting Algorithms?

 RQ 2: Is node.js is faster than PHP when it comes to heap algorithm?

 RQ 3: In overall, is node.js faster than PHP for backend scripting?

Description of Research Design, Apache JMeter, PHP & Node.js, Sorting Algorithms, and

Performance Metrics.

Our design for this research involved comparing the performance of two prominent backend scripting

technologies – PHP (old) and Node.js (new) using four sorting algorithms (bubble, binary, quick, heap) to

sort data as we exponentially increased the array size, and heap algorithm to generate all possible

permutations of the elements of the array. Each of the algorithms were run thirty (30) times for both PHP

and Node.js.

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

336

Performance metrics were collected using the Apache JMeter software – an open-source load testing tool

used to simulate different types of load testing scenarios for web applications. The selection of these

algorithms was based on popularity, relevance and effectiveness in data sorting as used in the field of

Computer Science. The key performance metric used in this research was latency and the following is a

detailed description of the research design.

Apache JMeter & Settings:

 Ramp Up time taken by JMeter to start all the virtual users specified in the test plan. It determines

the rate at which users are added during the test execution. We used a ramp-up time of 10.

 Thread – Thread refers to a single virtual user that simulates user activity on the application being

tested. Each thread executes the test script independently of all other threads. We simulated 100

virtual users.

Although, there is no one-size-fits-all answer to what the standard settings for ramp-up and threads (number

of simulated users) should be in Apache JMeter. The ideal values depend on various factors such as the size

and complexity of the application being tested, the available hardware resources, and the performance goals.

However, as a rule of thumb, the ramp-up time should be set to a value that allows a gradual increase in the

number of virtual users, instead of an abrupt spike. This helps simulate real-world scenarios where traffic

gradually increases over time. A good starting place for ramp-up time could be 5-10 seconds. The number

of threads, or virtual users, should also be chosen based on the hardware resources available for the load

testing.

In general, it is recommended to start with a low number of threads and gradually increase it to find the

optimal number that the system can handle without performance degradation or failures. A starting number

could be 50-100 threads, and then gradually increase to several hundred or even thousands depending on

the available resources. A ramp-up of 10 seconds is a reasonable choice for a 100 number of threads and a

typical test scenario as allows the load to be gradually increased (our array size), giving the server time to

warm up and stabilize before reaching the maximum load. It also provides enough time for JMeter to start

all the threads and for the server to respond to the initial requests. In Apache JMeter, the Ramp-up period

represents the time taken to spin up all the threads in the thread group.

For instance, if we have 100 threads and a ramp-up period of 10 seconds, then JMeter will create a new

thread every 100 milliseconds (10,000 milliseconds / 100 threads). In other words, the ramp-up period

determines how quickly the threads will be created and started. If the ramp-up period is short, like 1 second,

then all 100 threads will be created almost simultaneously, which could overload the server being tested.

On the other hand, if the ramp-up period is too long, like 100 seconds, then it will take too long to start all

the threads, and the test may not be representative of real-world scenarios. Therefore, the ramp-up period

of 10 seconds and 100 threads means that JMeter will create a new thread every 100 milliseconds over the

course of 10 seconds, so all threads will be active after the ramp-up period. This setting strikes a balance

between quickly starting the threads and not overloading the server with too many requests at once.

Figure 7a: Apache JMeter showing Number of Threads & Ramp-up period

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

337

Figure 7b: Apache JMeter showing test run results

Performance Metrics:

Latency (milliseconds) - The term "latency" describes how long it takes a server, usually measured in

milliseconds, to reply to a client request. It includes any processing time required on the server side as well

as the time it takes for a request to go from the client to the server and back again. A server that is quick

and responsive has a low latency, while one that is slow and unresponsive has a high latency.

Latency is an important metric for evaluating the performance of any system, especially in the context of

computer networks and the internet. Latency refers to the time delay between a request for data and the

response to that request. In other words, it is the time it takes for data to travel from its source to its

destination.

Low latency is important for several reasons. Firstly, it affects the user experience of interactive applications

such as online gaming, video conferencing, and real-time communication tools. In these applications, high

latency can cause delays and interruptions in communication, leading to a poor user experience. Secondly,

latency is critical for high-speed trading applications, where even a small delay can have a significant

impact on the outcome of a trade. In this context, low latency can give traders a competitive advantage by

allowing them to make decisions and execute trades faster than their competitors.

• Sample Time (milliseconds) - Sample time is the duration of time for which a test run is executed.

It can help identify whether the system can provide consistent performance over a period of time,

especially when multiple requests are made.

• Connect Time (milliseconds) - Connect time is the time taken to establish a connection between

the client and the server. A low connect time is crucial for applications that require frequent

connections, such as real-time applications.

• Sent Bytes (bytes) - Bytes refer to the amount of data transferred during a request/response cycle.

The amount of data transferred can have a significant impact on the overall performance of a

system, especially when handling large volumes of data.

Data Collection Process and Testing Procedures

As Apache JMeter provides several ways to collect data during load testing, our adopted collection process

involves the use of TABLE LISTENER – which provides listener to collect data in real-time while the load

test is running. With the table listener, we were able to capture a wide range of data including latency,

connect times, bytes, sample time etc. Data was collected during load tests of different array sizes. We

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

338

Apache JMeter enables us to export this table as a csv file and we calculated latency of each simulated user

for 30 runs.

Figure 8: Apache JMeter showing the Table Listener

Procedure:

To ensure that we are only running targeted load test, our testing procedure involves first right-clicking on

the intended algorithm, then clicking on ‘Start’ to begin the test load run.

Figure 9: Running targeted algorithm in Apache JMeter

Results

Our research question for this study involves determining if there is difference in performance between

PHP (old backend technology) and Node.js (new backend technology) and was evaluated by testing

performance with different algorithms. After writing the programs to implement various sorting algorithms,

and the heap algorithm to generate all possible permutations, we gathered our data from the performance

test we ran on Apache JMeter. Tables 10[a to l] show the t-test results of study which indicated that a

significant difference occurs between the performance of PHP and Node.js in all four of the algorithms

tested.

Table 10a: T-test Result for Bubble Sort of 100

Elements

 Table 10b: T-test Result for Bubble Sort of 100

T-Test Bubble Sort Array Size 100 T-Test Bubble Sort Array Size 1000

 PHP NODE.JS

 PHP NODE.JS

Mean 15.35 8.78

Mean 4435.34 837.66

Variance 9.59 2.72

Variance 637917.69 97517.36

Observations 30 30

Observations 30 30

Pooled Variance 6.16

Pooled Variance 367717.53

df 58

df 58

t Stat 10.26

t Stat 22.98

P(T<=t) one-tail 0

P(T<=t) one-tail 0

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

339

Table 10c: T-test Result for Bubble Sort of 10000

Elements

Table 10d: T-test Result for Binary Sort of 100

Elements

T-Test Bubble Sort Array Size 10000

T-Test Binary Sort Array Size 100

 PHP NODE.JS

 PHP NODE.JS

Mean 373562.1 33011.73

Mean 13.8 6.86

Variance 2034154626 75620299.33

Variance 9.54 2.21

Observations 30 30

Observations 30 30

Pooled Variance 1054887463

Pooled Variance 5.87

df 58

df 58

t Stat 40.61

t Stat 11.09

P(T<=t) one-tail 0

P(T<=t) one-tail 0

Table 10i: T-test Result for Quick Sort of 10000

Elements

Table 10j: T-test Result for Heap of 5

Elements

T-Test Quick Sort Array Size 10000

T-Test Heap Array Size 5
PHP NODE.JS

PHP NODE.JS

Mean 53.16 13.37

Mean 8.84 5.78

Variance 35.52 2.67

Variance 3.24 0.39

Observations 30 30

Observations 30 30

Pooled Variance 19.1

Pooled Variance 1.82

df 58

df 58

t Stat 35.27

t Stat 8.8

P(T<=t) one-tail 0

P(T<=t) one-tail 0

Table 10k: T-test Result for Heap of 7 Elements

Table 10l: T-test Result for Heap of 9

Elements

T-Test Heap Array Size 7

T-Test Heap Array Size 9
PHP NODE.JS

PHP NODE.JS

Mean 51.45 25.6

Mean 51627.94 39741.03

Variance 705.67 220.4

Variance 185368533 200767573.4

Observations 30 30

Observations 30 30

Pooled Variance 463.04

Pooled Variance 193068053

df 58

df 58

t Stat 4.65

t Stat 3.31

P(T<=t) one-tail 0.00001

P(T<=t) one-

tail

0.0008

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

340

Limitations and Future Research

There are some limitations that should be addressed. First, for the binary, bubble, and quick sort we limited

our array to 100, 1000, and 10000. For the Heap algorithm, our array size was limited to 5, 7 and 9. As such

our variability in sorting algorithm performance might be replicated for other larger or smaller array sizes.

In both PHP and Node.js cases, the implemented algorithms behaved differently as we varied the array size.

Secondly, we limited the scope of the study to the performance of sorting and heap algorithms which may

not be generalizable to other types of software or applications. Lastly, we limited the performance metric

to latency which may not capture all aspects of system performance.

Regarding our completed results and limitations of the study, there are several areas for future research.

One possibility would be to consider adding additional sorting algorithms and permutation generation

algorithms to determine performance difference in PHP and Node.js. Other backend technologies such as

Django, Ruby, and Perl could be considered and compare their performance to that of PHP and Node.js .

There is the potential that different hardware configurations could have an impact on performance. Lastly,

other factors such as development time, scalability, and maintainability might have an impact on

performance and should be investigated.

Conclusion

In conclusion, our research study examined the performance comparison between PHP and Node.js,

because they were two of the more prominent backend technologies. We implemented various complex

Table 10e: T-test Result for Bubble Sort of 1000

Elements

Table 10f: T-test Result for Binary Sort of

10000 Elements

 T-Test Binary Sort Array Size 1000 T-Test Binary Sort Array Size 10000

 PHP NODE.JS PHP NODE.JS

 Mean 17.83 10.64 Mean 47.55 24.93

 Variance 31.14 1.87 Variance 115.75 4.24

 Observations 30 30 Observations 30 30

 Pooled Variance 16.5
 Pooled Variance 59.99

 df 58
 df 58

 t Stat 6.85
 t Stat 11.31

 P(T<=t) one-tail 0
 P(T<=t) one-tail 0

Table 10g: T-test Result for Quick Sort of 100

Elements

Table 10h: T-test Result for Quick Sort of 1000

Elements

 T-Test Quick Sort Array Size 100 T-Test Quick Sort Array Size 1000

 PHP NODE.JS PHP NODE.JS

 Mean 9.42 6.63 Mean 15.19 6.37

 Variance 4.43 0.94 Variance 10.16 0.76

 Observations 30 30 Observations 30 30

 Pooled Variance 2.68
 Pooled Variance 5.46

 df 58
 df 58

 t Stat 6.59
 t Stat 14.62

 P(T<=t) one-tail 0
 P(T<=t) one-tail 0

Issues in Information Systems
Volume 24, Issue 1, pp. 328-341, 2023

341

sorting algorithms and a heap algorithm to generate all possible permutations with varying array sizes. Our

tests were run using Apache JMeter and the T-Test statistical method was used in analyzing the collected

data. Our results showed that Node.js performed better than PHP in all the tests, with notable statistically

significant differences between the two backend scripting technologies. This study contributes by providing

evidence that newer technologies such as Node.js does have superior performance compared to the older

technologies such as PHP. Future researchers are advised to expand on this study by considering more

algorithms and a larger sample size. This study provides valuable information for software engineers,

developers, and managers who are seeking the best framework for their web applications.

References

Adebukola, O. M., & Kazeem, O. B. (2014). Performance Comparison of dynamic Web scripting

Language: A case Study of PHP and ASP .NET. International Journal of Scientific &

Engineering Research, 661-668.

Ahmed, Z., Kinjol, F. J., & Ananya, I. J. (2021). Comparative Analysis of Six Programming Languages

Based on Readability, Writability, and Reliability 2021 24th International Conference on

Computer and Information Technology (ICCIT),

Brar, H., Kaur, T., & Rajoria, Y. (2021). The better comparison between PHP, python-web & Node. js.

Int. J. Res. Eng. Sci., 9(7), 29-37.

Challapalli, S. S. N., Kaushik, P., Suman, S., Shivahare, B. D., Bibhu, V., & Gupta, A. D. (2021). Web

Development and performance comparison of Web Development Technologies in Node. js and

Python 2021 International Conference on Technological Advancements and Innovations (ICTAI),

Chaniotis, I. K., Kyriakou, K.-I. D., & Tselikas, N. D. (2015). Is Node. js a viable option for building

modern web applications? A performance evaluation study. COMPUTING, 97, 1023-1044.

Lei, K., Ma, Y., & Tan, Z. (2014). Performance comparison and evaluation of web development

technologies in php, python, and node. js 2014 IEEE 17th international conference on

computational science and engineering,

Odeh, A. H. (2019). Analytical and Comparison Study of Main Web Programming Languages‒ASP and

PHP. TEM Journal, 8(4), 1517-1522.

Prayogi, A., Niswar, M., & Rijal, M. (2020). Design and implementation of REST API for academic

information system IOP Conference Series: Materials Science and Engineering,

Raharjo, W. S. (2014). Performance and Scalability Analysis of Node. js and PHP/Nginx Web

Application. Informatika: Jurnal Teknologi Komputer dan Informatika, 9(2), 67762.

